SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF 5-METHYLCARBAPENEMS

Hiroshi Onoue and Yukitoshi Narukawa
Shionogi Research Laboratories, Shionogi \& Co., Ltd., Fukushima-ku, Osaka 553, Japan
(Received for publication February 20, 1989)

Abstract

Four possible racemic isomers of N-acetyl-5-methylthienamycin derivatives were synthesized and their antibacterial activities are discussed in relation to their physico-chemical properties. 5-Methylcarbapenems having various $\mathrm{C}-2$ side chains were also prepared.

Although carbapenem antibiotics have excellent antibacterial potency and a wide range of activities, they are susceptible to renal dehydropeptidase-I (DHP-I), resulting in poor therapeutic efficacy in vivo ${ }^{1)}$. Since the stability of cephem and oxacephem antibiotics to β-lactamase can be improved by the introduction of the 7α-methoxyl group ${ }^{2}$, introducing an additional substituent into the carbapenem skeleton was tried to obtain metabolically stable derivatives. One of the most fruitful results was obtained with $1-\beta$-methylcarbapenems, which showed improved biological stability with the retainment of antibacterial activities ${ }^{3,4)}$. Recently, 6 -methoxy- ${ }^{5)}$ or 6 -methylcarbapenems ${ }^{6)}$ were synthesized, but they showed very weak activities. In an effort to find novel types of carbapenems with excellent chemical and biological stabilities, our recent interest was focused on $\mathrm{C}-5$ substituted carbapenems, especially 5-methyl derivatives. Although the simple 5 -methylcarbapenem was prepared previously ${ }^{7 \text { ² }}$, it lacked the hydroxyethyl side chain at its C-6 position, which is indispensable for high biological activity. This paper describes the syntheses of structurally unambiguous 5 -methylcarbapenems and their antibacterial activities together with some physico-chemical properties.

We first decided to synthesize four possible isomers of racemic N-acetyl-5-methylthienamycin derivatives to examine the effect of the relative stereochemistry between C-6 and C-8 on the antibacterial activity. Our next target was to synthesize the C-2 modified derivative to search for 5 methylcarbapenems with improved activity.

Chemistry

The reaction of chlorosulfonyl isocyanate with 3-methyl-3-butenyl acetate followed by reductive hydrolysis gave β-lactam $\mathbf{1}$ in 41% yield. Base-catalyzed deacetylation provided alcohol $\mathbf{2}$ in quantitative yield, which underwent protection with 2,2-dimethoxypropane to yield bicyclic acetonide $\mathbf{3}(92 \%)$. Treatment of 3 with lithium diisopropylamide (LDA) followed by acetaldehyde at $-50^{\circ} \mathrm{C}$ gave aldol products 4 as a mixture of four isomers (89%). Each of the four isomers could be identified in the 400 MHz NMR spectrum of the product mixture, and the ratio was determined to be $\mathbf{4 a}: \mathbf{4 b}: \mathbf{4 c}: \mathbf{4 d}=$ $47: 36: 8: 9$. Hydroxy-protection of this isomeric mixture 4 with p-nitrobenzyl (PNB) chloroformate provided a mixture of protected products, from which two of the major isomers $\mathbf{5 a}$ and $\mathbf{5 b}$ could be isolated as a crystalline material. One of the isolated isomers, $\mathbf{5 b}$, was subjected to X -ray crystallographic analysis and its structure was confirmed to be $8 R^{*}, 6 R^{*}$ (carbapenem structure numbering). Chemical correlation of the structurally unambiguous isomer $\mathbf{5 b}$ with another isomer $\mathbf{5 a}$ was carried out by the

Scheme 1.

1) $\mathrm{ClSO}_{2} \mathrm{NCO}$, 2) $\mathrm{NaOCH}_{3}-\mathrm{MeOH}$, 3) 2,2-dimethoxypropane, 4) $\mathrm{LDA}-\mathrm{CH}_{3} \mathrm{CHO}$, 5) PNB chloroformate.

Scheme 2.

1) $\left.\left.\mathrm{H}_{2}-\mathrm{Pd}, 2\right) \mathrm{MsCl}-\mathrm{Et}_{3} \mathrm{~N}, 3\right) \mathrm{NaHCO}_{3}-\mathrm{MeOH}$. Ms: Mesyl
well-known mesylation-elimination sequence ${ }^{8)}$ (Scheme 2). Both of the two isomers were subjected to deprotection of the PNB group, followed by mesylation and elimination to obtain the identical Z-ene lactam 7a. Since this type of elimination is known to proceed via an anti coplanar pathway, the present result showed the structure of 5 a to be $8 S^{*}, 6 S^{*}$.

The third isomer ($8 S^{*}, 6 R^{*}$) was synthesized in a stereoselective way ${ }^{9}$) as shown in Scheme 3. Oxidation of an isomeric mixture of $\mathbf{4 a} \sim 4 d$ gave ketone $\mathbf{8}$ as a mixture of $1: 1$ isomers (61%). Sulfenylation of 8 with p-tolyl p-toluenethiosulfonate in N, N-dimethylformamide (DMF) yielded 9 as a single isomer (60%). Reduction of 9 with sodium borohydride produced the alcohol $10(61 \%)$ having the desired S^{*} configuration at the hydroxyethyl side chain as a crystalline solid. Reduction of $\mathbf{1 0}$ with tri- n-butyltin hydride provided the cis ($6 R^{*}$) product 4 c in quantitative yield and the hydroxyl group of this product was protected as PNB carbonate to give the key intermediate $\mathbf{5 c}$. The structure of $\mathbf{4 c}$ was confirmed by the mesylation-elimination sequence to give E-ene lactam $7 \mathrm{7b}$.

Scheme 3.

1) Jones reagent, 2) $\mathrm{CH}_{3}-\mathrm{SSO}_{2}-\mathrm{CH}_{3}-\mathrm{Et}_{3} \mathrm{~N}$, 3) NaBH_{4}, 4) $\mathrm{Bu}_{3} \mathrm{SnH}$ - AIBN, 5) n - $\mathrm{BuLi}-\mathrm{PNB}$ chloroformate, 6) $\left.\mathrm{MsCl}-\mathrm{Et}_{3} \mathrm{~N}, 7\right) \mathrm{NaHCO}-\mathrm{MeOH}$.

Scheme 4.

1) H^{+}, 2) Jones reagent, 3) carbonyldimidazole, $\left(\mathrm{PNB}-\mathrm{OOCCH}_{2} \mathrm{COO}\right)_{2} \mathrm{Mg}$, 4) TsN_{3}, 5) $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$, 6) $\mathrm{CIPO}(\mathrm{OPh})_{2}$, (iso-Pr) $)_{2} \mathrm{NEt}, 7$) $\mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{NHAc}$, (iso- Pr$)_{2} \mathrm{NEt}$, 8) $\mathrm{H}_{2}-\mathrm{Pd}$.

Ts: Tosyl

Each of the three bicyclic acetals $\mathbf{5 a} \sim \mathbf{5 c}$ was hydrolyzed under acidic condition to give deprotected monocyclic azetidinones $\mathbf{1 1 a} \sim \mathbf{1 1}$ c in $32 \sim 80 \%$. Jones oxidation of these alcohols gave acids $\mathbf{1 2 a} \sim$ 12c and these intermediates were subjected to the well-known carbapenem synthetic sequence ${ }^{3)}$ to give the stereoisomers of N-acetyl-5-methylthienamycin 15a~15c (Scheme 4).

The final $8 R^{*}, 6 S^{*}$ isomer, racemic N-acetyl-5-methylthienamycin, was synthesized as follows (Scheme 5). The carboxylic acid 12a having $8 S^{*}, 6 S^{*}$ configuration was converted to methyl ester 16 whose PNB group was removed by catalytic hydrogenation to give hydroxy ester 17. Mitsunobu

Table 1. Physico-chemical properties of N-acetylthienamycin derivatives.

	N-Acetylthienamycin	15 d
Hydrolysis rate a (half life time)	$0.326(2.1$ hours $)$	$0.126(5.5$ hours $)$
IR carbonyl absorption ${ }^{b}$	$1761.1(1778.9)^{\text {c }}$	$1754.1(1775.9)^{\text {c }}$

${ }^{2}$ hour $^{-1}, 35^{\circ} \mathrm{C}, \mathrm{pH} 9.24$.
b cm^{-1}, DMSO solution.
c Data of PNB ester in CHCl_{8} solution.
inversion reaction of 17 yielded formylated ester 18 and after alkaline hydrolysis, hydroxy acid 19 with $8 R^{*}, 6 S^{*}$ configuration was obtained. This hydroxy acid 19 was converted to N-acetyl- 5 -methylthienamycin $\mathbf{1 5 d}$ as described above except that the hydroxyl group was not protected in this case.

To shed light on the relationship between chemical reactivity and antibacterial activity of 5-methylcarbapenem, we examined their physico-chemical properties; the hydrolysis rate and IR carbonyl absorption frequency (Table 1). The data of optically active N-acetylthienamycin is included as a reference. The compound ($\mathbf{1 5 d}$) selected for this measurement had the highest antibacterial activity among the four isomers. Comparison of its data with those of N-acetylthienamycin revealed that for the 5-methyl derivative, the hydrolysis rate was reduced to about one-third, and the carbonyl absorption wave number was shifted to a lower frequency by about $7 \mathrm{~cm}^{-1}$. These results suggest that the chemical reactivity of 5 -methylcarbapenem is reduced by the electron-donating effect of the 5 -methyl group.

Having established the relative stereochemistry of the most active isomer to be $8 R^{*}, 6 S^{*}$ (vide infra), we turned to the modification of the $\mathrm{C}-2$ side chain to improve its potency and synthesized various C-2 substituted 5-methylcarbapenems (Scheme 6). The synthesis was carried out by introducing the appropriate thiol into the bicyclic keto ester intermediate 20a. We also prepared p-methoxybenzyl ester intermediates $\mathbf{2 0 b}$ which could be deprotected in the final step with the aluminum trichlorideanisole system ${ }^{10}$. This final deprotection step was superior to the conventional catalytic deprotection of PNB esters, especially for substrates with the pyridinium moiety at the $\mathrm{C}-2$ side chain.

Antibacterial Activity ${ }^{\dagger}$

Table 2 summarizes the antibacterial activities of four isomers of racemic N-acetyl-5-methylthiena-
\dagger MICs were determined by the agar dilution method.

Scheme 6.

1) $\mathrm{ClPO}(\mathrm{OPh})_{2}$, $(\text { iso }-\mathrm{Pr})_{2} \mathrm{NEt}$, 2) $\mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{NHCOOPNB}^{2}$ (iso-Pr) $)_{2} \mathrm{NEt}$, 3) $\mathrm{H}_{2}-\mathrm{Pd}$, 4) $\mathrm{HS}-\mathrm{N}$, (iso- $\left.\operatorname{Pr})_{2} \mathrm{NEt}, 5\right) \mathrm{AlCl}_{3}$, anisole, 6) $\mathrm{CH}_{3} \mathrm{OTf}$, 7) $\mathrm{HSCH}_{2}-\mathrm{C}_{\mathrm{N}}$, (iso-Pr) $\left.{ }_{2} \mathrm{NEt}, 8\right) \mathrm{CH}_{3} \mathrm{I}$. PMB: p-Methoxybenzyl
mycin 15a $\sim 15 d$ together with the data of optically active N-acetylthienamycin. Clearly, the relative stereochemistry between $\mathrm{C}-6$ and $\mathrm{C}-8$ had a large effect on the activity, with almost one hundred difference between the most potent and the least potent isomers. The activity decreased in the following order: $8 R^{*}, 6 S^{*}>8 S^{*}, 6 R^{*}>8 S^{*}, 6 S^{*}>8 R^{*}, 6 R^{*}$. This order is the same as that found for the parent 5 -unsubstituted thienamycin isomers ${ }^{11)}$. Therefore, the isomer with most potent activity has the same relative stereochemistry, $8 R^{*}, 6 S^{*}$, irrespective of the presence or absence of the 5 -methyl group.

Comparison of chiral N-acetylthienamycin with 15 d having the same relative stereochemistry shows that introduction of the 5 -methyl substituent resulted in decreased activities against both Grampositive and Gram-negative strains except for Pseudomonas aeruginosa.

The results of the physico-chemical experiment of 15 d and N -acetylthienamycin suggested that the chemical reactivity of 5 -methylated carbapenem was reduced by the electron-donating effect of the 5-methyl group. Therefore, the decreased antibacterial activity of 5-methylcarbapenem can be attributed to the reduced chemical reactivity.

Table 3 summarizes the antibacterial activities of various $\mathrm{C}-2$ modified racemic 5 -methylcar-

Table 2. Comparative activity (MIC; $\mu \mathrm{g} / \mathrm{ml}$) of N-acetylthienamycin derivatives.

Organism	N-Acetylthienamycin	$\mathbf{1 5 ~ d}$	$\mathbf{1 5} \mathbf{c}$	$\mathbf{1 5 a}$	$\mathbf{1 5} \mathbf{~ b}$
Staphylococcus aureus JC-1	0.1	1.6	3.1	50	100
S. aureus Smith	0.1	3.1	6.3	100	100
Streptococcus pyogenes C-203	0.02	0.8	0.8	25	100
S. pneumoniae I	0.01	0.4	1.6	50	100
Escherichia coli JC-2	0.1	6.3	12.5	>100	>100
E. coli 73 (R)	0.2	6.3	25	>100	>100
Klebsiella pneumoniae SRL-1	0.2	6.3	6.3	>100	>100
Proteus mirabilis PR-4	0.4	12.5	25	>100	>100
Pseudomonas aeruginosa 25619	100	25	100	>100	>100
P. aeruginosa PS-24	100	>100	>100	>100	>100

Table 3. Comparative activity (MIC; $\mu \mathrm{g} / \mathrm{ml}$) of 5-methylcarbapenem derivatives and thienamycin.

Organism	Thienamycin	$\mathbf{2 2}$	$\mathbf{2 7}$	$\mathbf{2 4}$	$\mathbf{2 5}$
Staphylococcus aureus JC-1	0.025	0.4	0.4	0.2	0.1
S. aureus Smith	0.05	0.4	0.4	0.2	0.1
Streptococcus pyogenes C-203	-	0.4	0.1	0.2	0.05
S. pneumoniae I	-	0.4	0.1	0.1	0.1
Escherichia coli JC-2	0.4	25	12.5	3.1	3.1
E. coli 73 (R)	0.8	25	12.5	0.8	3.1
Klebsiella pneumoniae SRL-1	0.8	25	12.5	0.8	3.1
Proteus mirabilis PR-4	0.4	50	25	1.6	3.1
Pseudomonas aeruginosa 25619	3.1	6.3	6.3	12.5	12.5
P. aeruginosa PS-24	12.5	12.5	12.5	100	12.5

bapenems including optically active thienamycin. Data for $\mathbf{2 2}$ indicate that the introduction of 5methyl substituent resulted in a decrease in activities against most of the strains. However, 5 -methylcarbapenems such as 24 and 25 having $\mathrm{C}-2$ substituents which activate β-lactam carbonyl group by π conjugation showed relatively good results. It should be pointed out that activity against P. aeruginosa is retained. This result could be explained by the improved permeability of 5 -methylcarbapenems through the outer membrane of P. aeruginosa. A preliminary experiment in our laboratories disclosed that the stability of 5 -methylcarbapenem in mouse kidney homogenate was much greater than that of the 5 -unsubstituted one.

Experimental

General Methods

MP's were determined on a Yanagimoto apparatus and were not corrected. IR spectra were obtained on a Hitachi $260-10$ spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian EM390, VXR-200, XL-200, and VXR-400 with TMS as an internal standard. In the case of spectra taken in $\mathrm{D}_{2} \mathrm{O}$, internal (3-trimethylsilyl)-1-propanesulfonic acid sodium salt (DSS) or external TMS was used. UV spectra were obtained on a Hitachi 320 spectrometer. Column chromatography was performed on Merck Silica gel 60 ($230 \sim 400$ mesh or $70 \sim 230$ mesh). Elemental analyses were performed with crystalline compounds ($\pm 0.4 \%$ accuracy).

(4R*)-4-(2-Acetoxyethyl)-4-methyl-2-azetidinone (1)

To a cooled $\left(-15^{\circ} \mathrm{C}\right)$ solution of $41.78 \mathrm{~g}(0.33 \mathrm{~mol})$ of 3-methyl-3-butenyl acetate in 100 ml of diethyl ether was added over 50 minutes, $27 \mathrm{ml}(0.31 \mathrm{~mol})$ of chlorosulfonyl isocyanate. After stirring in an ice-bath for 1 hour, the mixture was allowed to stand at $5^{\circ} \mathrm{C}$ overnight. The mixture was then
added dropwise over 20 minutes to an ice-cooled mixture of $59 \mathrm{~g}(0.47 \mathrm{~mol})$ of sodium sulfite, 135 g $(0.78 \mathrm{~mol})$ of dipotassium hydrogen phosphate, 300 ml of water and 200 ml of diethyl ether. The resulting mixture was stirred at room temperature for additional 1 hour. Extractive work-up with diethyl ether and crystallization from diethyl ether gave $21.30 \mathrm{~g}(41 \%)$ of 1 as a colorless crystalline solid: MP $75.5 \sim 76.5^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3400(\mathrm{NH}), 1750\left(\beta\right.$-lactam $\mathrm{C}=\mathrm{O}$), 1730 (ester $\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{COO}\right), 2.03\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.79$ $\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{d}, J=2\right.$ and $\left.15 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 4.21\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.55(1 \mathrm{H}, \mathrm{br}, \mathrm{NHCO})$.

($4 R^{*}$)-4-(2-Hydroxyethyl)-4-methyl-2-azetidinone (2)

To a solution of $23.70 \mathrm{~g}(0.138 \mathrm{~mol})$ of 1 in 250 ml of methanol was added with ice-cooling 3.0 ml of sodium methoxide (4.6 m solution in methanol, 0.014 mol). After stirring at $0^{\circ} \mathrm{C}$ for 2 hours, 0.96 ml of acetic acid was added and the mixture was concentrated in vacuo. The resulting oil was passed through a short column of silica gel using EtOAc - acetone (1:1). Concentration of the eluent gave 18.83 g (quantitative yield) of 2 as a colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3400(\mathrm{NH}), 1750$ (β-lactam $\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.92\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.69(2 \mathrm{H}, \mathrm{ABq}, \mathrm{d}$, $J=2$ and $\left.13 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.57(1 \mathrm{H}, \mathrm{br}, \mathrm{HO}), 3.79\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 6.95(1 \mathrm{H}, \mathrm{br}, \mathrm{NHCO})$.
($6 R^{*}$)-2,2,6-Trimethyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (3)
To a solution of $15.89 \mathrm{~g}(0.117 \mathrm{~mol})$ of 2 and $22 \mathrm{ml}(0.18 \mathrm{~mol})$ of 2,2-dimethoxypropane in 160 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added at room temperature $2.8 \mathrm{ml}(0.023 \mathrm{~mol})$ of boron trifluoride etherate. After stirring at room temperature for 2 hours, the mixture was washed with phosphate buffer solution ($1 \mathrm{~m}, \mathrm{pH} 7$) and then with brine. The organic layer was dried and concentrated in vacuo to give an oil which was crystallized from hexane - diethyl ether to afford $18.14 \mathrm{~g}(92 \%)$ of 3 : MP $47.5 \sim 48.5^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1740(\beta$-lactam $\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.50(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.64 \sim 1.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.63 \sim 4.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right)$.

7-(1-Hydroxyethyl)-2,2,6-trimethyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (4)
To a solution of 22 ml of diisopropylamine (0.157 mol) in 230 ml of THF was added at $-50^{\circ} \mathrm{C}$ 95 ml (1.5 m in hexane) of n-butyllithium. After stirring for 10 minutes, a solution of 20.13 g (0.119 mol) of 3 in 50 ml of THF was added slowly so that the temperature of the mixture did not exceed $-50^{\circ} \mathrm{C}$. Stirring was continued for additional 15 minutes and $11 \mathrm{ml}(0.197 \mathrm{~mol})$ of acetaldehyde was added in one portion. After 15 minutes at $-50^{\circ} \mathrm{C}$, the mixture was partitioned between saturated ammonium chloride and EtOAc. Usual work-up followed by chromatography on silica gel afforded $22.48 \mathrm{~g}(89 \%)$ of 4 as a mixture of four isomers.
$\left(6 R^{*}, 7 S^{*}\right)-7-\left[\left(1 S^{*}\right)-1-(p\right.$-Nitrobenzyloxycarbonyloxy)ethyl]-2,2,6-trimethyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (5a) and (6R*,7 $\left.R^{*}\right)-7-\left[\left(1 R^{*}\right)-1-(p\right.$-Nitrobenzyloxycarbonyloxy)ethyl] $2,2,6$-tri-methyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (5b)

To a solution of $7.48 \mathrm{~g}(35.1 \mathrm{mmol})$ of 4 in 300 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added with ice-cooling 15.30 g (71.0 mmol) of PNB chloroformate in 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 8.59 g (70.3 mmol) of 4 - $(N, N$-dimethylamino)pyridine successively. After 2.5 hours at room temperature, the mixture was poured into 10% phosphoric acid and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried, concentrated, and chromatographed (Lobar column, C-type) to give $4.18 \mathrm{~g}(30 \%)$ of $8 S^{*}, 6 S^{*}$ isomer 5 a and $3.68 \mathrm{~g}(27 \%)$ of $8 R^{*}, 6 R^{*}$ isomer $5 \mathbf{b}$. Both isomers were crystallized from hexane - diethyl ether.
$8 S$, ${ }^{6} 6 S^{*}$ Isomer (5a): MP $129.5 \sim 130^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1740(\beta$-lactam $\mathrm{C}=\mathrm{O}), 1520\left(\mathrm{NO}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.44\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.73$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.60 \sim 1.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.94(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CHCO}), 3.66 \sim 4.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right)$, $5.10(1 \mathrm{H}$, quintet, $J=6 \mathrm{~Hz}, \mathrm{CH}), 5.26\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{OCO}\right), 7.56(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic), 8.23 ($2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic).
$8 R^{*}, 6 R^{*}$ Isomer (5b): MP $114 \sim 116^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1740(\beta$-lactam $\mathrm{C}=\mathrm{O}), 1520\left(\mathrm{NO}_{2}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.36\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.72$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.5 \sim 2.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.95(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{CHCO}), 3.8 \sim 4.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 5.06 \sim$ $5.42(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 5.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{OCO}\right), 7.56(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic), $8.26(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic).
($\left.6 R^{*}, 7 R^{*}\right)-7-\left[\left(1 R^{*}\right)-1-\right.$ Hydroxyethyl $]-2,2,6$-trimethyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (4b)
A mixture of $5 \mathbf{b}$ ($504 \mathrm{mg}, 1.28 \mathrm{mmol}$) and 15% palladium hydroxide on carbon (141 mg) in ethanol $(15 \mathrm{ml})$ and THF (15 ml) was hydrogenated under 1 atm at room temperature for 1 hour. Filtration and evaporation followed by chromatography on silica gel afforded $245 \mathrm{mg}(89 \%$) of $\mathbf{4 b}$ as a colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3500(\mathrm{OH}), 1740(\beta$-lactam $\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.21(3 \mathrm{H}, \mathrm{d}, J=$ $\left.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.9 \sim 2.3\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 2.72$ $(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}, \mathrm{CHOH}), 2.76(1 \mathrm{H}, \mathrm{br}, \mathrm{HO}), 3.7 \sim 4.0\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.1 \sim 4.4(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$.
$\left(6 R^{*}, 7 R^{*}\right)-7-\left[\left(1 R^{*}\right)\right.$-1-Methanesulfonyloxyethyl]-2,2,6-trimethyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (6b)

To a mixture of $\mathbf{4 b}(110 \mathrm{mg}, 0.52 \mathrm{mmol})$ and triethylamine $(108 \mu \mathrm{l}, 0.78 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added with ice-cooling mesyl chloride ($48 \mu \mathrm{l}, 0.62 \mathrm{mmol}$) and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes and at room temperature for 35 minutes. The mixture was then partitioned between EtOAc and 10% phosphoric acid, extracted with EtOAc, washed with $5 \% \mathrm{NaHCO}_{3}$ solution and with brine, dried, and concentrated to give $6 \mathrm{~b}(139 \mathrm{mg}, 93 \%)$ as a colorless crystal: MP $138 \sim 139^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $\mathrm{cm}^{-1} 1750(\beta$-lactam $\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.47(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.8 \sim 2.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 2.98(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}, \mathrm{CH})$, $3.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.7 \sim 4.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.05(1 \mathrm{H}, \mathrm{qd}, J=6$ and $10 \mathrm{~Hz}, \mathrm{CH})$.
(Z)-7-Ethylidene-2,2,6-trimethyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (7a)

A mixture of $\mathbf{6 b}(102 \mathrm{mg}, 0.35 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(64 \mathrm{mg}, 0.76 \mathrm{mmol})$ in methanol $(5 \mathrm{ml})$ was heated to reflux for 1.5 hours. The mixture was filtered and concentrated, and the residue was partitioned between EtOAc and water. Extractive work-up followed by crystallization from hexane gave $7 \mathrm{a}\left(68 \mathrm{mg}, 96 \%\right.$) as a colorless crystal: MP $138 \sim 139^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1740(\beta$-lactam $\mathrm{C}=\mathrm{O})$) ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.99(3 \mathrm{H}, \mathrm{d}, J=$ $\left.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.7 \sim 2.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.6 \sim 4.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.64(1 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C})$.
($6 R^{*}, 7 S^{*}$)-7-[(1 S^{*})-1-Hydroxyethyl]-2,2,6-trimethyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (4a)
4 a was prepared from 5 a as described for $\mathbf{4 b} ; 95 \%$ yield, colorless crystal: MP $78 \sim 78.5^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3500(\mathrm{OH}), 1740(\beta$-lactam $\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.30(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.7 \sim 1.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 2.45(1 \mathrm{H}, \mathrm{br}$, $\mathrm{OH}), 2.79(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CHOH}), 3.7 \sim 4.3\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CH}\right)$.
$\left(6 R^{*}, 7 S^{*}\right)-7-\left[\left(1 S^{*}\right)\right.$-1-Methanesulfonyloxyethyl]-2,2,6-trimethyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (6a)

6a was prepared from $\mathbf{4 a}$ as described for $\mathbf{6 b} ; 97 \%$ yield, colorless crystal: MP $137.5 \sim 139.5^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1750(\beta$-lactam $\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.53(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.58\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.7 \sim 1.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 2.99(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}$, $\mathrm{CH}), 3.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.7 \sim 4.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.09(1 \mathrm{H}, \mathrm{q}, J=6 \mathrm{~Hz}, \mathrm{CH})$.
(Z)-7-Ethylidene-2,2,6-trimethyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (7a)

7 a was also derived from 6 a as described for 6 b in 95% yield.
$\left(4 R^{*}, 3 S^{*}\right)-3-\left[\left(1 S^{*}\right)-1-(p-N i t r o b e n z y l o x y c a r b o n y l o x y)\right.$ ethyl $]-4-(2-$ hydroxyethyl $)$-4-methyl-2-azetidinone (11a)

A solution of $3.98 \mathrm{~g}(10.1 \mathrm{mmol})$ of 5 a and $2.31 \mathrm{~g}(12.1 \mathrm{mmol})$ of p-toluenesulfonic acid in 60 ml of dioxane and 30 ml of water was heated to $80^{\circ} \mathrm{C}$ for 3 hours. After cooling to room temperature the mixture was partitioned between $5 \% \mathrm{NaHCO}_{3}$ solution and EtOAc. The organic solution was washed with aq NaHCO_{3} and brine, dried, concentrated, and crystallized from ethanol - diethyl ether to give $2.87 \mathrm{~g}(80 \%)$ of 11 a as a colorless crystalline solid: MP $103.5 \sim 104.5^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1}$ $3400(\mathrm{NH}), 3600 \sim 3200(\mathrm{OH}), 1750(\beta$-lactam $\mathrm{C}=\mathrm{O}), 1520\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.36$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.39\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.88\left(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.65(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.06(1 \mathrm{H}, \mathrm{d}$, $J=7 \mathrm{~Hz}, \mathrm{CHCO}), 3.76\left(2 \mathrm{H}, \mathrm{brq}, J=6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 5.11(1 \mathrm{H}$, quintet, $J=6 \mathrm{~Hz}, \mathrm{CHO}), 5.25(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{OCO}\right), 6.71(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.55(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic), $8.21(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic).
$\left(4 R^{*}, 3 S^{*}\right)-3-\left[\left(1 S^{*}\right)-1-(p-\right.$ Nitrobenzyloxycarbonyloxy)ethyl]-4-carboxymethyl-4-methyl-2-azetidinone (12a)

To a solution of 11.73 g (33.3 mmol) of 11 a in 200 ml of acetone was added with ice-cooling 18.5 ml of Jones reagent (50 mmol). After stirring at room temperature for 1 hour, the reaction was quenched with 2-propanol and precipitate formed was collected by filtration. The precipitate was thoroughly washed with water and dried to give $7.96 \mathrm{~g}(65 \%)$ of $\mathbf{1 2 a}$ as a white solid. The acetone filtrate was concentrated and partitioned between NaHCO_{3} solution and EtOAc. The aqueous layer was separated, washed with EtOAc, and acidified with 2 N HCl . The precipitate was collected by filtration, washed with water to give $1.90 \mathrm{~g}(16 \%)$ of $\mathbf{1 2 a}$. Total yield 81% : IR (KBr) $\mathrm{cm}^{-1} 3350$ $(\mathrm{NH}), 3600 \sim 2400(\mathrm{COOH}), 1750(\beta$-lactam $\mathrm{C}=\mathrm{O}), 1730(\mathrm{C}=\mathrm{O}), 1520\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, DMSO- $\left.d_{6}\right) \delta 1.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.34\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.61\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{COO}\right), 3.14(1 \mathrm{H}, \mathrm{d}$, $J=4.1 \mathrm{~Hz}, \mathrm{CHCO}), 5.03(1 \mathrm{H}$, qd, $J=6.5$ and $4.1 \mathrm{~Hz}, \mathrm{CH}), 5.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCO}\right), 7.65(2 \mathrm{H}, \mathrm{d}$, $J=8.8 \mathrm{~Hz}$, aromatic), $8.25(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, aromatic $)$.
p-Nitrobenzyl $\left(5 R^{*}, 6 S^{*}\right)-6-\left[\left(1 S^{*}\right)-1-(p\right.$-Nitrobenzyloxycarbonyloxy)ethyl]-5-methyl-2-(2-acetamido-ethylthio)carbapen-2-em-3-carboxylate

Yellow foam: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3450(\mathrm{NH}), 1785(\beta$-lactam $\mathrm{C}=\mathrm{O}), 1745$ (ester $\mathrm{C}=\mathrm{O}$), 1680 (amide $\mathrm{C}=\mathrm{O}), 1530\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.46\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.96$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.8 \sim 3.0\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.2 \sim 3.5\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CHCO}\right), 5.13(1 \mathrm{H}$, quintet, $J=6 \mathrm{~Hz}$, $\mathrm{CHO}), 5.26\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCO}\right), 5.34\left(2 \mathrm{H}, \mathrm{ABq}, J=14 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OCO}\right), 6.38(1 \mathrm{H}$, br t, $J=5 \mathrm{~Hz}, \mathrm{NH})$, $7.54(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic), $7.63(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic), $8.16(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic), $8.18(4 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic).

Sodium ($5 R^{*}, 6 S^{*}$)-6-[(1 $\left.S^{*}\right)$-1-Hydroxyethyl]-5-methyl-2-(2-acetamidoethylthio)carbapen-2-em-3carboxylate (15a)

Pale yellow powder: IR (KBr) $\mathrm{cm}^{-1} 1750$ (β-lactam $\mathrm{C}=\mathrm{O}$), 1650 (amide $\mathrm{C}=\mathrm{O}$), 1600 (carboxylate $\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, external TMS) $\delta 1.76\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.46$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.3 \sim 3.5$ and $3.8 \sim 4.0\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CH}_{2}, \mathrm{CHCO}\right), 4.70(1 \mathrm{H}$, quintet, $J=6 \mathrm{~Hz}$, $\mathrm{CHOH})$; UV $\lambda_{\text {max }}^{\mathrm{H}_{\mathrm{O}}} \mathrm{nm} 300$.
$8 R^{*}, 6 R^{*}$ isomer ($\mathbf{5 b}$) was converted to the corresponding 5 -methylcarbapenem (15b) as described above.
(4R*,3R*)-3-[(1 $\left.R^{*}\right)-1-(p$-Nitrobenzyloxycarbonyloxy)ethyl $]-4$-(2-hydroxyethyl)-4-methyl-2-azetidinone (11b)

Yield 67%, colorless crystal: MP $84 \sim 84.5^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3400(\mathrm{NH}), 3600 \sim 3200(\mathrm{OH})$, 1750 (β-lactam $\mathrm{C}=\mathrm{O}$), $1520\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.38\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.43$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.6 \sim 2.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.78(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 2.92(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CHCO}), 3.7 \sim 3.9(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 5.17(1 \mathrm{H}$, quintet, $J=7 \mathrm{~Hz}, \mathrm{CH}), 5.26\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCO}\right), 6.76(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.55(2 \mathrm{H}, \mathrm{d}$,
$J=8 \mathrm{~Hz}$, aromatic), $8.22(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic).
(4R*,3R*)-3-[(1R*)-1-(p-Nitrobenzyloxycarbonyloxy)ethyl]-4-carboxymethyl-4-methyl-2-azetidinone ($\mathbf{1 2 b}$)

Yield 77%, colorless crystal: MP $74^{\circ} \mathrm{C}(\mathrm{dec}) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3400(\mathrm{NH}), 3300(\mathrm{OH}), 1735$ $(\beta$-lactam $\mathrm{C}=\mathrm{O}), 1520\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.44\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.52(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.68\left(2 \mathrm{H}, \mathrm{ABq}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{COO}\right), 3.04(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CHCO}), 5.0 \sim 5.3(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $5.24\left(2 \mathrm{H}, \mathrm{ABq}, J=14 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OCO}\right), 7.54(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic), $7.66(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 8.20(2 \mathrm{H}$, $\mathrm{d}, J=8 \mathrm{~Hz}$, aromatic), $8.70(1 \mathrm{H}, \mathrm{br}, \mathrm{COOH})$.
p-Nitrobenzyl ($\left.5 R^{*}, 6 R^{*}\right)-6-\left[\left(1 R^{*}\right)-1-(p\right.$-Nitrobenzyloxycarbonyloxy)ethyl]-5-methyl-2-(2-acetamidoethylthio) carbapen-2-em-3-carboxylate

Pale yellow foam: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3450(\mathrm{NH}), 1785$ (β-lactam $\mathrm{C}=\mathrm{O}$), 1750 (ester $\mathrm{C}=\mathrm{O}$), 1675 (amide $\mathrm{C}=\mathrm{O}), 1520\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.41\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.8 \sim 3.6\left(7 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CH}_{2}, \mathrm{CHCO}\right), 5.0 \sim 5.3(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}), 5.29(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{OCO}\right), 5.31\left(2 \mathrm{H}, \mathrm{ABq}, J=14 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OCO}\right), 6.47(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{NH}), 7.55(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aro-
matic), $7.64(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic), $8.20(4 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic).
Sodium $\left(5 R^{*}, 6 R^{*}\right)-6-\left[\left(1 R^{*}\right)\right.$-1-Hydroxyethyl]-5-methyl-2-(2-acetamidoethylthio)carbapen-2-em-3carboxylate ($\mathbf{1 5 b}$)

White powder: IR (KBr) $\mathrm{cm}^{-1} 1740$ (β-lactam $\mathrm{C}=\mathrm{O}$), 1650 (amide $\mathrm{C}=\mathrm{O}$), 1595 (carboxylate $\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, external TMS) $\delta 1.59\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.44(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.3 \sim 3.5\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.47\left(2 \mathrm{H}, \mathrm{ABq}, J=17 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.6 \sim 4.0\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CH}\right), 4.08$ ($1 \mathrm{H}, \mathrm{dq}, J=7$ and $10 \mathrm{~Hz}, \mathrm{CHOH}$); UV $\lambda_{\max }^{\mathrm{H}, 0} \mathrm{~nm} 300$.
(6R*)-7-Acetyl-2,2,6-trimethyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (8)
To a solution of $11.88 \mathrm{~g}(55.7 \mathrm{mmol})$ of isomeric mixture of 4 in 240 ml of acetone was added with ice-cooling 31 ml of Jones reagent (84 mmol). After stirring at room temperature for 50 minutes, the reaction was quenched with 2-propanol and precipitate was removed by filtration. The precipitate was dissolved in dilute HCl and extracted with EtOAc. The acetone filtrate was concentrated and poured into 10% phosphoric acid, and extracted with EtOAc. Both extracts were combined, dried, concentrated, and chromatographed on silica gel to give $7.18 \mathrm{~g}(61 \%)$ of $\mathbf{8}$ as a mixture of two isomers (ca. 1:1 ratio); pale yellow oil: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1755$ (β-lactam $\mathrm{C}=\mathrm{O}$), 1715 (ketone $\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.40$ and $1.43\left(3 \mathrm{H}\right.$, two s, $\left.\mathrm{CH}_{3}\right), 1.50$ and $1.61\left(3 \mathrm{H}\right.$, two s, $\left.\mathrm{CH}_{3}\right), 1.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.5 \sim 2.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.7 \sim 4.2\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CH}\right)$.
($6 R^{*}, 7 S^{*}$)-7-Acetyl-7-(4-toluenesulfenyl)-2,2,6-trimethyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (9)
To a solution of $7.18 \mathrm{~g}(34.0 \mathrm{mmol})$ of 8 and $11.80 \mathrm{~g}(42.4 \mathrm{mmol})$ of p-tolyl p-toluenethiosulfonate in 70 ml of DMF was added at room temperature $14.3 \mathrm{ml}(103 \mathrm{mmol})$ of triethylamine. After 2 hours, the mixture was poured into 10% phosphoric acid and extracted with EtOAc. The extract was washed with $5 \% \mathrm{NaHCO}_{3}$ solution and with brine, and dried. Concentration and chromatography on silica gel yielded $6.75 \mathrm{~g}(60 \%)$ of 9 as a pale yellow oil: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1760(\beta$-lactam $\mathrm{C}=\mathrm{O}), 1700$ (ketone $\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.6 \sim 1.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right)$, $2.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.7 \sim 4.2\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CH}\right), 7.0 \sim 7.2(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.4 \sim$ $7.6(2 \mathrm{H}, \mathrm{m}$, aromatic).
$\left(6 R^{*}, 7 S^{*}\right)-7-\left[\left(1 S^{*}\right)\right.$-1-Hydroxyethyl]-7-(4-toluenesulfenyl)-2,2,6-trimethyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (10)

To a solution of 6.75 g (20.2 mmol) of 9 in 70 ml of THF and 70 ml of ethanol was added with ice-cooling 923 mg (24.4 mmol) of sodium borohydride. The mixture was stirred in an ice-bath for 0.5 hour and at room temperature for 0.5 hour and quenched with acetone. Most of the solvent was removed in vacuo, partitioned between 10% phosphoric acid and EtOAc. The organic layer was washed with $5 \% \mathrm{NaHCO}_{3}$ solution and with brine, dried, and concentrated. The residue was crystallized from hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $3.03 \mathrm{~g}(45 \%)$ of 10 as a colorless crystalline solid. The mother liquor was concentrated and chromatographed to afford $1.09 \mathrm{~g}(16 \%)$ of the additional product. Total yield was 61% : MP $132 \sim 133^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3600 \sim 3300(\mathrm{OH}), 1740$ (β-lactam $\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.46\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.70\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.22$ $(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.8 \sim 3.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.7 \sim 4.3\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CH}\right), 7.0 \sim 7.2(2 \mathrm{H}$, m , aromatic), $7.5 \sim 7.7(2 \mathrm{H}, \mathrm{m}$, aromatic).
($6 R^{*}, 7 R^{*}$)-7-[(1S*)-1-Hydroxyethyl]-2,2,6-trimethyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (4c)
A mixture of $10(4.12 \mathrm{~g}, 12.3 \mathrm{mmol}), 13.0 \mathrm{ml}(49 \mathrm{mmol})$ of tri- n-butyltin hydride, and 0.20 g (1.22 mmol) of azobisisobutyronitrile (AIBN) in 150 ml of acetone was refluxed under argon for 3.3 hours. Concentration and chromatography on silica gel gave quantitatively 2.73 g of $\mathbf{4 c}$ as a colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3600 \sim 3300(\mathrm{OH}), 1740(\beta$-lactam $\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.36$ $\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.9 \sim 2.6\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right)$, $1.96(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 2.78(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}, \mathrm{CHOH}), 3.7 \sim 4.4\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CH}\right)$.
$\left(6 R^{*}, 7 R^{*}\right)-7$ - [(1 $\left.S^{*}\right)-1-$ Methanesulfonyloxyethyl $]-2,2,6$-trimethyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (6c)
$6 c$ was prepared from $4 c$ as described for $6 b ; 94 \%$ yield, colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1750$
$(\beta$-lactam $\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.63(3 \mathrm{H}, \mathrm{d}, J=$ $\left.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.0 \sim 2.4\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.06(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}, \mathrm{CH}), 3.02(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 3.8 \sim 4.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.18(1 \mathrm{H}, \mathrm{dq}, J=6$ and $10 \mathrm{~Hz}, \mathrm{CH})$.
(E)-7-Ethylidene-2,2,6-trimethyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (7b)

7 b was prepared from $\mathbf{6 c}$ as described for $7 \mathbf{a} ; 90 \%$ yield, colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.74\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.8 \sim 2.2(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.6 \sim 4.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 6.04(1 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C})$.
$\left(6 R^{*}, 7 R^{*}\right)-7-\left[\left(1 S^{*}\right)-1\right.$-(p-Nitrobenzyloxycarbonyloxy)ethyl $]$-2,2,6-trimethyl-8-oxo-3-oxa-1-azabicyclo[4.2.0]octane (5c)

To a solution of $1.050 \mathrm{~g}(4.92 \mathrm{mmol})$ of 4 c in 25 ml of dry THF was added $3.9 \mathrm{ml}(1.5 \mathrm{~m}$ in hexane, 5.9 mmol) of n-butyllithium at $-78^{\circ} \mathrm{C}$. To this was added after 10 minutes, a solution of 1.612 g (7.48 mmol) of p-nitrobenzyl chloroformate in 4 ml of dry THF, stirred at $-78^{\circ} \mathrm{C}$ for 10 minutes, and warmed to room temperature over 30 minutes. The mixture was poured into water, extracted with EtOAc, and dried. Concentration and chromatography on silica gel gave $1.287 \mathrm{~g}(67 \%)$ of 5 c as a colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1750(\beta$-lactam $\mathrm{C}=\mathrm{O}), 1520\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.47\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.8 \sim 2.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $3.01(1 \mathrm{H}, \mathrm{d}, J=11 \mathrm{~Hz}, \mathrm{CHCO}), 3.7 \sim 4.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 5.15(1 \mathrm{H}, \mathrm{dq}, J=6$ and $11 \mathrm{~Hz}, \mathrm{CH}), 5.23$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCO}\right), 7.51(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic), $8.22(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic).
$8 S^{*}, 6 R^{*}$ isomer (5c) was converted to the corresponding 5-methylcarbapenem (15c) as described for 15 a .
$\left(4 R^{*}, 3 R^{*}\right)-3-\left[\left(1 S^{*}\right)-1-(p\right.$-Nitrobenzyloxycarbonyloxy)ethyl]-4-(2-hydroxyethyl)-4-methyl-2-azetidinone (11c)

Yield 32%, colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3400(\mathrm{NH}), 3600 \sim 3200(\mathrm{OH}), 1750(\beta$-lactam $\mathrm{C}=\mathrm{O})$, $1520\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.49\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.7 \sim 2.2$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.80(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.11(1 \mathrm{H}, \mathrm{d}, J=11 \mathrm{~Hz}, \mathrm{CHCO}), 3.87(2 \mathrm{H}, \mathrm{dd}, J=5$ and 8 Hz , $\left.\mathrm{CH}_{2} \mathrm{O}\right), 5.15(1 \mathrm{H}, \mathrm{dq}, J=6$ and $11 \mathrm{~Hz}, \mathrm{CH}), 5.26\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCO}\right), 6.43(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.55(2 \mathrm{H}, \mathrm{d}$, $J=8 \mathrm{~Hz}$, aromatic), $8.26(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic).
$\left(4 R^{*}, 3 R^{*}\right)-3-\left[\left(1 S^{*}\right)-1-(p\right.$-Nitrobenzyloxycarbonyloxy)ethyl $]-4$-carboxymethyl-4-methyl-2-azetidinone (12c)
64% Yield, white powder: MP $76^{\circ} \mathrm{C}(\mathrm{dec})$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3400(\mathrm{NH}), 3400 \sim 3200(\mathrm{OH}), 1760$ (lactam $\mathrm{C}=\mathrm{O}$), 1740 (carboxylic acid $\mathrm{C}=\mathrm{O}$), $1520\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.50(3 \mathrm{H}, \mathrm{d}$, $\left.J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.63\left(2 \mathrm{H}, \mathrm{ABq}, J=16 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{COO}\right), 3.14(1 \mathrm{H}, \mathrm{d}, J=11 \mathrm{~Hz}$, $\mathrm{CHCO}), 4.9 \sim 5.2(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 5.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCO}\right), 7.27(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}, \mathrm{COOH}), 7.56(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 8 Hz , aromatic), $8.26(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic).
p-Nitrobenzyl $\left(5 R^{*}, 6 R^{*}\right)-6-\left[\left(1 S^{*}\right)-1-(p\right.$-Nitrobenzyloxycarbonyloxy)ethyl]-5-methyl-2-(2-acetamidoethylthio) carbapen-2-em-3-carboxylate

Pale yellow foam: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3450(\mathrm{NH}), 1780$ (β-lactam $\mathrm{C}=\mathrm{O}$), 1750 (ester $\mathrm{C}=\mathrm{O}$), 1675 (amide $\mathrm{C}=\mathrm{O}$), $1520\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.51\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.8 \sim 3.1$ and $3.3 \sim 3.6\left(7 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CH}_{2}, \mathrm{CHCO}\right), 5.07(1 \mathrm{H}, \mathrm{dq}, J=$ 6 and $10 \mathrm{~Hz}, \mathrm{CHO}), 5.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCO}\right), 5.37\left(2 \mathrm{H}, \mathrm{ABq}, J=14 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OCO}\right), 6.00(1 \mathrm{H}, \mathrm{br}$ t, NH), $7.56(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic), $7.66(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic), $8.23(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, arom matic), 8.25 ($2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic).

Sodium $\left(5 R^{*}, 6 R^{*}\right)-6-\left[\left(1 S^{*}\right)\right.$-1-Hydroxyethyl]-5-methyl-2-(2-acetamidoethylthio)carbapen-2-em-3carboxylate (15c)

Pale yellow powder: IR (KBr) $\mathrm{cm}^{-1} 1750$ (β-lactam $\mathrm{C}=\mathrm{O}$), 1650 (amide $\mathrm{C}=\mathrm{O}$), 1595 (carboxylate $\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, external TMS) $\delta 1.78\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.44$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.3 \sim 3.5$ and $3.7 \sim 4.0\left(7 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CH}_{2}, \mathrm{CHCO}\right), 4.52(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}) ;$ UV $\lambda_{\text {mex }}^{\mathrm{H} O} \mathrm{O} \mathrm{nm} 300$.
$\left(4 R^{*}, 3 S^{*}\right)$-3-[(1S*)-1-(p-Nitrobenzyloxycarbonyloxy)ethyl]-4-methoxycarbonylmethyl-4-methyl-2azetidinone (16)

To an ice-cooled solution of excess diazomethane in diethylether was added $5.03 \mathrm{~g}(13.7 \mathrm{mmol})$ of 12a in THF (50 ml) and 50 ml of DMF was then added. After being stirred with ice-cooling for 30 minutes, the mixture was quenched by acetic acid and poured into 10% phosphoric acid and EtOAc. Extractive work-up followed by crystallization from hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave $4.99 \mathrm{~g}(96 \%)$ of 16 as a colorless crystal: MP $111 \sim 112^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3400(\mathrm{NH}), 1760$ (lactam C=O), 1740 (ester C=O), $1520\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.46\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.67(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{COO}\right), 3.07(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CHCO}), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 5.14(1 \mathrm{H}$, quintet, $J=6 \mathrm{~Hz}, \mathrm{CH})$, $5.25\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCO}\right), 6.52(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.53(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic), $8.19(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic).
(4R*, $\left.3 S^{*}\right)$-3-[(1S $\left.S^{*}\right)$-1-Hydroxyethyl]-4-methoxycarbonylmethyl-4-methyl-2-azetidinone (17)
A mixture of $16(4.99 \mathrm{~g}, 13.1 \mathrm{mmol})$ and 15% palladium hydroxide on carbon $(1.14 \mathrm{~g})$ in ethanol (70 ml) and THF (50 ml) was hydrogenated at room temperature under 1 atm for 1 hour. Filtration and evaporation followed by chromatography afforded $2.41 \mathrm{~g}(91 \%)$ of 17 as a colorless crystal: MP $91 \sim 92.5^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3400(\mathrm{NH}), 3600 \sim 3200(\mathrm{OH}), 1740(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.29\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.63(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 2.66\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{COO}\right), 2.86(1 \mathrm{H}$, d, $J=6 \mathrm{~Hz}, \mathrm{CHCO}$), $3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 4.0 \sim 4.2(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.60(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$.

($4 R^{*}, 3 S^{*}$)-3-[($\left.1 R^{*}\right)$-1-Formyloxyethyl]-4-methoxycarbonylmethyl-4-methyl-2-azetidinone (18)

To an ice-cooled solution of $17(2.41 \mathrm{~g}, 12.0 \mathrm{mmol})$ and triphenylphosphine ($3.81 \mathrm{~g}, 14.5 \mathrm{mmol}$) in THF (50 ml) were added formic acid ($0.68 \mathrm{ml}, 18 \mathrm{mmol}$) and diisopropyl azodicarboxylate (2.8 ml , 14 mmol). After being stirred with ice-cooling for 10 minutes and at room temperature for 3 hours, solid $\mathrm{NaHCO}_{3}(0.38 \mathrm{~g}, 4.5 \mathrm{mmol})$ was added. Filtration and evaporation followed by chromatography gave 18 (2.78 g , quantitative yield) as a colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3400(\mathrm{NH}), 1765$ (β-lactam $\mathrm{C}=\mathrm{O}$), 1725 (ester $\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.46\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $2.68\left(2 \mathrm{H}, \mathrm{ABq}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{COO}\right)$, $3.12(1 \mathrm{H}, \mathrm{d}, J=11 \mathrm{~Hz}, \mathrm{CHCO}), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 5.35$ $(1 \mathrm{H}, \mathrm{dq}, J=6$ and $11 \mathrm{~Hz}, \mathrm{CH}), 6.70(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 8.00(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$.

($\left.4 R^{*}, 3 S^{*}\right)-3-\left[\left(1 R^{*}\right)\right.$-1-Hydroxyethyl]-4-carboxymethyl-4-methyl-2-azetidinone (19)

To an ice-cooled solution of $\mathbf{1 8}(381 \mathrm{mg}, 1.66 \mathrm{mmol})$ in methanol (8 ml) and water (2 ml) was added dropwise 2.4 N NaOH aqueous solution ($1.52 \mathrm{ml}, 3.65 \mathrm{mmol}$). After being stirred at $0^{\circ} \mathrm{C}$ for 45 minutes and at room temperature for 3 hours, the mixture was concentrated in vacuo and partitioned between water and diethyl ether. The organic layer was removed and the aqueous layer was acidified with 2 N HCl . After saturation with NaCl , the aqueous layer was extracted with methyl ethyl ketone, dried, and concentrated to give 19 as a colorless solid ($205 \mathrm{mg}, 66 \%$) : IR (KBr) $\mathrm{cm}^{-1} 3600 \sim 2400$ (OH), $1720(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.33\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{COO}\right), 2.93(1 \mathrm{H}, \mathrm{d}, J=11 \mathrm{~Hz}, \mathrm{CHCO}), 4.09(1 \mathrm{H}, \mathrm{dq}, J=6$ and $11 \mathrm{~Hz}, \mathrm{CH})$.
$8 R^{*}, 6 S^{*}$ isomer (19) was converted to the corresponding 5 -methylcarbapenem (15d) as described above.
p-Nitrobenzyl $\left(5 R^{*}, 6 S^{*}\right)$-6-[(1 $\left.R^{*}\right)$-1-Hydroxyethyll-5-methyl-2-(2-acetamidoethylthio)carbapen-2-em-3-carboxylate

Pale yellow solid: MP $189 \sim 191^{\circ} \mathrm{C}$; IR (KBr) $\mathrm{cm}^{-1} 1770(\beta$-lactam $\mathrm{C}=\mathrm{O}$), 1690 (ester $\mathrm{C}=\mathrm{O}$), 1650 (amide $\mathrm{C}=\mathrm{O}$), $1510\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.90 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 1.20\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.47(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.8 \sim 3.4\left(7 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CH}_{2}, \mathrm{CHCO}\right), 3.8 \sim 4.3(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.91$ $(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{OH}), 5.36\left(2 \mathrm{H}, \mathrm{ABq}, J=13 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OCO}\right), 7.72(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic), 8.15 $(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 8.24(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$, aromatic).

Sodium ($5 R^{*}, 6 S^{*}$)-6-[(1 $\left.R^{*}\right)$-1-Hydroxyethyl]-5-methyl-2-(2-acetamidoethylthio)carbapen-2-em-3carboxylate (15d)

White solid: IR (KBr) $\mathrm{cm}^{-1} 1740$ (β-lactam $\mathrm{C}=\mathrm{O}$), 1650 (amide $\mathrm{C}=\mathrm{O}$), 1590 (carboxylate $\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, external TMS) $\delta 1.79\left(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.46(3 \mathrm{H}$,
$\left.\mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.2 \sim 4.0\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CH}\right), 4.71(1 \mathrm{H}, \mathrm{dq}, J=6$ and $10 \mathrm{~Hz}, \mathrm{CHOH})$; UV $\lambda_{\text {max }}^{\mathrm{H}_{2} \mathrm{O}} \mathrm{nm} 300$.

Determination of Hydrolysis Rate Constants

Hydrolysis rate constants of chiral N-acetylthienamycin and 15d were determined according to the literature method ${ }^{12)}$ with $10^{-4} \mathrm{M}$ of substrate in $\mathrm{NaHCO}_{3}-\mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{NaCl}$ buffer solution (0.1 m , $\mu=0.5$, pH 9.24) at $35.0 \pm 0.1^{\circ} \mathrm{C}$. UV-absorption at 300 or 320 nm was observed and no new band appeared around here.
p-Nitrobenzyl $\left(\left(5 R^{*}, 6 S^{*}\right)-6-\left[\left(1 R^{*}\right)-1-\right.\right.$ Hydroxyethyl $]-5-m e t h y l-2-[2-(p$-nitrobenzyloxycarbonyl-amino)ethylthio]carbapen-2-em-3-carboxylate (21)

21 was prepared as described above; pale yellow foam: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3450(\mathrm{NH}), 1780(\beta-$ lactam $\mathrm{C}=\mathrm{O}), 1730($ ester $\mathrm{C}=\mathrm{O}), 1520\left(\mathrm{NO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.43(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.91 \sim 3.30\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CHCO}\right), 3.43\left(2 \mathrm{H}, \mathrm{q}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.28(1 \mathrm{H}$, $\mathrm{qd}, J=6.4$ and $9.6 \mathrm{~Hz}, \mathrm{CH}), 5.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCO}\right), 5.38\left(2 \mathrm{H}, \mathrm{ABq}, J=13.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OCO}\right), 7.50(2 \mathrm{H}$, d, $J=8.6 \mathrm{~Hz}$, aromatic), $7.66(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}$, aromatic), $8.22(4 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$, aromatic).
(5R*,6S*)-6-[(1R*)-1-Hydroxyethyl]-5-methyl-2-(2-aminoethylthio)carbapen-2-em-3-carboxylic acid (22)

Colorless solid: IR (KBr) $\mathrm{cm}^{-1} 1750$ (β-lactam $\mathrm{C}=\mathrm{O}$), 1580 (carboxylate $\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{DSS}\right) \delta 1.23\left(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.09(2 \mathrm{H}, \mathrm{ABq}, J=17.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.05 \sim 3.27\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.32(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}, \mathrm{CHCO}), 4.28(1 \mathrm{H}, \mathrm{dq}, J=6.3$ and $9.7 \mathrm{~Hz}, \mathrm{CHOH}$); UV $\lambda_{\max }^{\mathrm{H} O} \mathrm{~nm} 298$.
p-Methoxybenzyl ($5 R^{*}, 6 S^{*}$)-6-[(1R $\left.R^{*}\right)$-1-Hydroxyethyl]-5-methyl-2-(4-pyridylthio)carbapen-2-em-3carboxylate (23)

23 was prepared as described above; pale yellow foam: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 3300(\mathrm{OH}), 1775(\beta-$ $\operatorname{lactam} \mathrm{C}=\mathrm{O}), 1710($ ester $\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.38\left(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.52$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.68\left(2 \mathrm{H}, \mathrm{ABq}, J=18.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.07(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{CHCO}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right)$, $4.22(1 \mathrm{H}, \mathrm{dq}, J=6.1$ and $10.0 \mathrm{~Hz}, \mathrm{CHOH}), 5.27\left(2 \mathrm{H}, \mathrm{ABq}, J=12.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OCO}\right), 6.85 \sim 6.93(2 \mathrm{H}$, m , aromatic), $7.35 \sim 7.44(4 \mathrm{H}, \mathrm{m}$, aromatic), $8.57 \sim 8.62$ ($2 \mathrm{H}, \mathrm{m}$, aromatic).

Sodium $\left(5 R^{*}, 6 S^{*}\right)-6-\left[\left(1 R^{*}\right)\right.$-1-Hydroxyethyl]-5-methyl-2-(4-pyridylthio)carbapen-2-em-3-carboxylate (24)

24 was prepared according to the literature method ${ }^{10)}$; pale yellow solid: IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1750$ (β-lactam $\mathrm{C}=\mathrm{O}$), 1600 (carboxylate $\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{DSS}\right) \delta 1.31(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.82\left(2 \mathrm{H}, \mathrm{ABq}, J=17.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.32(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}, \mathrm{CHCO}), 4.27(1 \mathrm{H}$, (dq, $J=6.4$ and $9.7 \mathrm{~Hz}, \mathrm{CHOH}), 7.45 \sim 7.49(2 \mathrm{H}, \mathrm{m}$, aromatic), $8.42 \sim 8.47$ ($2 \mathrm{H}, \mathrm{m}$, aromatic).
(5R*,6S*)-6-[(1 $\left.R^{*}\right)$-1-Hydroxyethyl]-5-methyl-2-(1-methyl-4-pyridiniothio)carbapen-2-em-3-carboxylate (25)

To a solution of $23(294 \mathrm{mg}, 0.67 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added methyl trifluoromethanesulfonate $\left(\mathrm{CH}_{3} \mathrm{OTf}\right)(0.083 \mathrm{ml}, 0.73 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$. After being stirred for 10 minutes the mixture was slowly warmed to room temperature over 30 minutes and evaporated to give a pale yellow foam (416 mg). This pyridinium salt was deprotected as for 24 to give $\mathbf{2 5}(14 \%$ yield) as a yellow solid: IR
 $\left(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.03\left(2 \mathrm{H}, \mathrm{ABq}, J=17.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.49(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}$, $\mathrm{CHCO}), 4.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 4.32(1 \mathrm{H}, \mathrm{dq}, J=6.3$ and $9.6 \mathrm{~Hz}, \mathrm{CHOH}), 7.73 \sim 7.78(2 \mathrm{H}, \mathrm{m}$, aromatic), $8.44 \sim 8.49(2 \mathrm{H}, \mathrm{m}$, aromatic).
p-Methoxybenzyl (5R, $\left.6 S^{*}\right)$-6-[(1 $\left.R^{*}\right)$-1-Hydroxyethyl]-5-methyl-2-(4-pyridylmethylthio)carbapen-2-em-3-carboxylate (26)

26 was prepared as described above; pale yellow foam: IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{cm}^{-1} 1775$ (β-lactam $\mathrm{C}=\mathrm{O}$), 1700 (ester $\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.39\left(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.77$ $(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 2.90\left(2 \mathrm{H}, \mathrm{ABq}, J=17.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.03(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{CHCO}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right)$,
$4.00\left(2 \mathrm{H}, \mathrm{ABq}, J=14.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~S}\right), 4.22(1 \mathrm{H}, \mathrm{dq}, J=6.2$ and $10.2 \mathrm{~Hz}, \mathrm{CHOH}), 5.24(2 \mathrm{H}, \mathrm{ABq}, J=$ $12.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OCO}$), $6.85 \sim 6.91(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.26 \sim 7.34(2 \mathrm{H}, \mathrm{m}$, aromatic), $7.37 \sim 7.43(2 \mathrm{H}$, m , aromatic), $8.53 \sim 8.66(2 \mathrm{H}, \mathrm{m}$, aromatic).
(5R*, $6 S^{*}$)-6-[(1R*)-1-Hydroxyethyl]-5-methyl-2-(1-methyl-4-pyridiniomethylthio)carbapen-2-em-3carboxylate (27)

To a solution of $26(208 \mathrm{mg}, 0.46 \mathrm{mmol})$ in acetone (15 ml) was added iodomethane (1.5 ml) and the mixture was allowed to stand at room temperature overnight. After concentration, the residue was triturated with diethyl ether to give a yellow solid (257 mg). This pyridinium salt was deprotected as for 24 to give 27 as a pale yellow solid, 12% yield: IR (KBr) $\mathrm{cm}^{-1} 1750(\beta$-lactam $\mathrm{C}=\mathrm{O}$), 1600 (carboxylate $\mathrm{C}=\mathrm{O}$) ; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{DSS}$) $\delta 1.29\left(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.92\left(2 \mathrm{H}, \mathrm{ABq}, J=17.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.23(2 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, \mathrm{CHCO}), 4.23(1 \mathrm{H}, \mathrm{dq}, J=6.3$ and 9.8 Hz , $\mathrm{CHOH}), 4.32\left(2 \mathrm{H}, \mathrm{ABq}, J=16.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~S}\right), 4.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 8.04 \sim 8.08(2 \mathrm{H}, \mathrm{m}$, aromatic), $8.68 \sim$ $8.72(2 \mathrm{H}, \mathrm{m}$, aromatic $)$.

Acknowledgment

The authors thank Dr. Y. Komatsu, Dr. T. Yoshida, and their associates for the antibacterial assays, Dr. M. Shro for X-ray crystallographic analysis, Dr. Y. Terui for NMR measurement, and Dr. M. Takasuka for IR measurement.

References

1) Kropp, H.; J. G. Sundelof, R. Hajdu \& F. M. Kahan: Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase-I. Antimicrob. Agents Chemother. 22: 62~70, 1982
2) Nagata, W.; M. Narisada \& T. Yoshida: Partial synthesis of nuclear analogs of cephalosporins. In Chemistry and Biology of β-Lactam Antibiotics. Vol 2. Nontraditional β-Lactam Antibiotics. Eds., R. B. Morin \& M. Gorman, pp. 1~98, Academic Press, New York, 1982
3) Shif, D. H.; F. Baker, L. Cama \& B. G. Christensen: Synthetic carbapenem antibiotics I. 1- β-Methylcarbapenem. Heterocycles 21: 29~40, 1984
4) Sunagawa, M.; H. Matsumura, T. Inoue, M. Fukasawa \& M. Kato: Sm-7338, a new carbapenem antibiotics: Structure-activity relations and physicochemical properties. Program and Abstracts of the 27 th Intersci. Conf. on Antimicrob. Agents Chemother., No. 752, p. 228, New York, Oct. 4~7, 1987
5) Watanabe, A.; Y. Fukagawa, T. Ishikura \& T. Yoshioka: Total synthesis of 6-hydroxy-epi-PS 5 and 6-methoxy-epi-PS 5. Bull. Chem. Soc. Jpn. 60: 2091~2099, 1987
6) Satoh, H. \& T. Tsuji: Synthesis of racemic carbapenems with a 6β-methyl group. Heterocycles 27: 2803~2806, 1988
7) Ponsford, R. J.; P. M. Roberts \& R. Southgate: Intramolecular Wittig reactions with thioesters: The synthesis of 7-oxo-3-phenylthio-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylates. J. Chem. Soc. Chem. Commun. 1979: 847~848, 1979
8) Bouffard, F. A.; D. B. R. Johnston \& B. G. Christensen: Thienamycin total synthesis. 1. Synthesis of azeditinone precursors of (\pm)-thienamycin and its stercoisomers. J. Org. Chem. 45: 1130~1135, 1980
9) Bateson, J. H.; A. M. Quin \& R. Southgate: Sulphenylation and halogenation reactions leading selectively to cis-carbapenem precursors; Stereospecific synthesis of (\pm)-6-epithienamycin. J. Chem. Soc. Chem. Commun. 1986: $1151 \sim 1152,1986$
10) Ohtani, M.; F. Watanabe \& M. Narisada: Mild deprotection of carbapenem esters with aluminum trichloride. J. Org. Chem. 49: 5271~5272, 1984
11) Leanza, W. J.; K. J. Wildonger, J. Hannah, D. H. Shit, R. W. Ratcliffe, L. Barash, E. Walton, R. A. Firestone, G. F. Patel, F. M. Kahan, J. S. Kahan \& B. G. Christensen: Structure-activity relationships in the thienamycin series. In Recent Advances in the Chemistry of β-Lactam Antibiotics. Ed., G. I. GreGORY, pp. $240 \sim 254$, The Royal Society of Chemistry, London, 1981
12) Narisada, M.; T. Yoshida, M. Ohtani, K. Ezumi \& M. Takasuka: Synthesis and substituent effects on antibacterial activity, alkaline hydrolysis rates, and infrared absorption frequencies of some cephem analogues related to latamoxef (moxalactam). J. Med. Chem. 26: 1577~1582, 1983
